K3VLS Series Swash Plate Type Axial Piston Pump

Specifications, General Descriptions, and Features

1. Ordering Code
 1-1. Pump Options
 1-2. Regulator Options
2. Technical Information
 2-1. Specifications
 2-2. Functional Description of Regulator
 Load Sensing and Pressure Cut-off
 Pressure Cut-off
 Torque Limiter
 Torque Limiter with Power Shift
 Electric Displacement Control (Positive Control)
3. Dimensions
 3-1. Installation Dimensions
 K3VLS50
 K3VLS65
 K3VLS85
 K3VLS105
 K3VLS125/150
 3-2. Installation of Auxiliary Pumps

K3VLS Series Inquiry Form
Applications / Product Usage

The following must be taken into consideration before use.

1. The operating condition of the products shown in this catalog varies depending upon each application. Therefore, the product suitability must be judged by the designer of the hydraulic system and/or the person who finalizes the technical specifications of the machine after analysis and testing. The product specification shall be determined based on the latest catalog and technical documents. The system must be designed taking into account the possibility of machine failure to ensure that all safety, warning, and application requirements are met.

2. For the proper use of the products, descriptions given in the SAFETY PRECAUTIONS must be observed.

3. The technical information in this catalog represents typical characteristics and performance of the products as of the published date.

4. If the intended use of the products is included in the following, please consult with Kawasaki in advance.
 (1) Use the product in the operating conditions or environments other than those described in the technical documents.
 (2) Use the product in the nuclear sector, aviation sector, medical sector, and/or food sector.
 (3) Use the product in applications which may cause substantial harm to others and their property, and especially in applications where ensuring safety is a requirement.

5. The information described in this catalog is subject to change without notice. For the latest information, please contact Kawasaki.
Safety Precautions

Before using the product, you MUST read this catalog and MUST fully understand how to use the product. To use the product safely, you MUST carefully read all Warnings and Cautions in this catalog.

1. Cautions related to operation

- Use the personal protective equipment to prevent injury when the product is in operation.
- Some components are heavy. Handle the product carefully not to hurt your hands and lower back.
- Do not step on, hit or drop, or apply strong force to the product, as these actions may cause operation failure, product damage, or oil leakage.
- Wipe off any oil on the product or the floor completely, as oil can create slippery conditions that may cause drop of the product and personal injury.

2. Warnings and cautions related to installation and removal of the product

- Installation, removal, piping, and wiring must be done by a qualified technician.
- Make sure that the hydraulic power unit is turned off and that the electric motor or engine has completely stopped before starting installation or removal. You must also check that the system pressure has dropped to zero.
- Make sure that the power source is turned off before installing electric components to reduce the risk of electric shock.
- Clean the threads and the mounting surface to prevent damage or oil leakage. Inadequate cleaning may cause insufficient torque and broken seals.
- Use the designated bolts and fasten them with prescribed torque when installing the product. Use of undesigned bolts, and excessive or insufficient tightening torque may induce operation failure, damage, or oil leakage.

3. Warnings and cautions for operation

- Always equip the product with explosion or ignition protection if it is used in potentially explosive or combustible atmospheres.
- Shield rotary parts, such as the motor and pump shaft, to avoid injury.
- Stop operation immediately, and take proper measures when the abnormality such as unusual noise, oil leakage, and smoke is found. Continuing operation under such condition may bring about damage, a fire hazard, or injury.
- Make sure that all pipes, hoses, and connecting points with pipes or hoses, are correctly connected and tightened before starting operation.
- Use the product under the operating conditions and limitations described in the catalog, drawings, and specification sheets.
- Do not touch the product in operation. to reduce the risk of skin burn.
- Use the proper hydraulic oil and maintain the filtration at the recommended level to prevent premature wear and damage.

4. Cautions related to maintenance

- Never modify the product without approval from Kawasaki.
- Disassembly of the product may void the warranty.
- Keep the product clean and dry when storing or transporting.
- The seals may need to be replaced if the product has been stored for an extended period of time.
- Making adjustments of this product will result in the warranty being null and void.
Handling Precautions

1. Operating Fluid and Temperature Range

1) Operating fluid
Values shown in this catalog are based upon using mineral oil based anti-wear hydraulic fluid. To ensure optimal performance use of mineral oil based anti-wear hydraulic fluid is recommended.

2) Viscosity and temperature range
To minimize both oil and seal deterioration, a maximum operating temperature of 60ºC should be considered. Please note that the regulator may become slow to respond when operating at low temperatures (below 20ºC) in extreme cold environments. At such low temperature it is strongly suggested that a warm up cycle is introduced until an operating temperature of 20ºC is achieved.

<table>
<thead>
<tr>
<th>Normal operating range</th>
<th>Allowable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity [mm²/s(cSt)]</td>
<td>10 to 200</td>
</tr>
<tr>
<td>Fluid temperature [°C (°F)]</td>
<td>−20 to +95 (−4 to +203)</td>
</tr>
</tbody>
</table>

2. Filtration and Contamination Control

1) Filtration of working oil
The most important means to prevent premature damage to the pump and associated equipment and to extend its working life, is to ensure that hydraulic fluid contamination control of the system is working effectively.

This begins by ensuring that at the time of installation that all piping, tanks etc. are rigorously cleaned in a sanitary way. Flushing should be provided using an off line filtration system and after flushing the filter elements should be replaced.

A full flow return line filter of 10 micron nominal should be utilised to prevent contaminant ingress from the external environment, a 5 to 10 micron filter with the tank’s breather is also recommended.

2) Suggested acceptable contamination level
The relationship between contamination level and pump life is very difficult to predict as it depends on the type and nature of the contaminant present in the system. Sand or Silica in particular, due to its abrasive nature, does significantly reduce the expected life of a pump. Based on the precondition that there is no significant presence of Silica type substances then a minimum Cleanliness level of -/-18/15 ISO 4406 or SAE AS 4059E Table 1 Class 9 (NAS 1638 Class 9).
3. Drive Shaft Coupling

Alignment between the prime mover and the pump shaft should be within 0.05 mm TIR*. In case the pump is directly coupled to the engine flywheel, use a flexible coupling.

*TIR = Total Indicator Reading

4. Oil Filling and Air Bleeding

1) Pump case filling

Be sure to fill the pump casing with oil through the drain port, filling only the suction line with oil is totally insufficient. The pump contains bearings and high-speed sliding parts including pistons with shoes and a spherical bush that need to be continuously lubricated. Part seizure or total premature failure will occur very quickly if this procedure is not rigidly followed.

2) Air bleeding

Run the pump unloaded for a period to ensure that all residual air within the system is released.

3) Long term out of usage

It is undesirable to leave the pump out of use for a long period e.g. a year or more. In such a situation it is recommended that the pump is run for a short period on a more frequent basis even if it is just unloaded. With regard to a pump held in storage then rotating the shaft on a frequent basis is sufficient. If the pump is left out for more than the suggested time it will require a service inspection.
5. Drain Piping

1) Installation of drain line

It is the preferred option to mount the pump with the case drain piping initially rising above the pump before continuing to the tank. Do not connect the drain line to the inlet line.

Cautions

A) Inlet and drain pipes must be immersed by 200 mm minimum from the lowest level under operating conditions.

B) Height from the oil level to the centre of the shaft must be within 1 meter maximum.

C) The oil in the pump case must be refilled when the pump has not been operated for one month or longer.

The uppermost drain port should be used and the drain piping must be larger in size than the drain port to minimise pressure in the pump case. The pump case pressure must not exceed 0.1 MPa as shown in the illustration below. (Peak pressure must never exceed 0.4 MPa.)

2) Size of drain hose or drain pipe

The internal bore size of the drain hose or drain pipe must be larger than that of the drain port. Arrange the drain line as short as possible.
6. Mounting the Pump Above the Tank

Suction line

7. Shaft Loading and Bearing Life

Although K3VLS pumps are equipped with bearings that can accept some external thrust and radial forces, application of such loads will affect bearing life. Depending on the load magnitude, the load position, and the load orientation, bearing life may be significantly reduced.
Conversion Factors, Formula and Definition

Conversion Factors

<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>1 cm³ = 0.061 in³</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>1 MPa = 145 psi</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>1 L/min = 0.264 gpm</td>
<td>US gallon</td>
</tr>
<tr>
<td>Torque</td>
<td>1 Nm = 0.74 lb ft</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>1 kW = 1.341 hp</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>1 kg = 2.205 lb</td>
<td></td>
</tr>
</tbody>
</table>

Formula

<table>
<thead>
<tr>
<th></th>
<th>Metric system</th>
<th>Imperial system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output flow</td>
<td>Q = q x N x (\eta_v) / 1000</td>
<td>L/min Q = q x N x (\eta_v) / 231</td>
</tr>
<tr>
<td>Input torque</td>
<td>T = q x (\Delta P) / 2(\pi) / (\eta_m)</td>
<td>Nm T = q x (\Delta P) / 24(\pi) / (\eta_m)</td>
</tr>
<tr>
<td>Input power</td>
<td>L = T x N / 9550 = Q x (\Delta P) / 60 / (\eta_t)</td>
<td>kW L = T x N / 5252 = Q x (\Delta P) / 1714 / (\eta_t)</td>
</tr>
</tbody>
</table>

Definition

\[
\begin{align*}
q & = \text{Pump displacement / rev.} \\
L & = \text{Input power} \\
N & = \text{Speed} \\
\Delta P & = \text{P}_d - \text{P}_s \\
\text{P}_d & = \text{Pump delivery pressure} \\
\text{P}_s & = \text{Pump suction pressure} \\
\text{P}_L & = \text{Load sensing pressure} \\
\text{P}_{dr} & = \text{Pump case pressure} \\
\text{P}_r & = \text{Power shift pressure} \\
\text{P}_{sv} & = \text{Servo pressure} \\
T & = \text{Input torque} \\
T_{max} & = \text{Maximum input torque} \\
\eta_v & = \text{Pump volumetric efficiency} \\
\eta_m & = \text{Pump mechanical efficiency} \\
\eta_t & = \text{Pump total efficiency}
\end{align*}
\]
K3VLS Series

Swash Plate Type Axial Piston Pump

Specifications
Size: 50, 65, 85, 105, 125, 150
Rated Pressure: 28 MPa
Peak Pressure: 35 MPa

General Descriptions
The K3VLS are variable displacement axial piston pumps of swash plate design, suitable for use in mobile applications and industrial vehicles with medium pressure hydraulic systems.

The K3VLS pumps enable flexible configuration in a wide range of applications with their compact size and light weight design.

The K3VLS series pumps are available in size (rated displacement) ranging from 50 to 150 cm³/rev with various control options, such as load sensing, pressure cut-off, and horsepower controls.

Features
- Variable axial piston pump of swash plate design in open circuits
- High overall efficiency
- Compact size
- Light weight
- Excellent reliability
- Numerous control options
- High stability
- Highly responsive controls

(*) means under development
1-1 Pump Options

Please fill in the Inquiry Form on page 62 in order to specify the requirement.

<table>
<thead>
<tr>
<th>Model Code</th>
<th>K3VLS</th>
<th>105</th>
<th>-</th>
<th>1</th>
<th>BB</th>
<th>R</th>
<th>CC</th>
<th>S</th>
<th>-</th>
<th>L1</th>
<th>A</th>
<th>A</th>
<th>M1</th>
</tr>
</thead>
</table>

1. K3VLS Series Pump

K3VLS Series, Variable Displacement, Axial Piston, Open Loop Pump

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>50</th>
<th>65</th>
<th>85</th>
<th>105</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Displacement</td>
<td>cm³</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

3. O-ring Material

(Oil seal in Fluororubber only)

- : NBR (nitrile rubber) O-ring seals

4. Series Specifications

- : Standard Type

5. Through Drive and Porting

- : Without Through Drive, Side Ported
- : SAE A Through Drive, Side Ported
- : SAE B Through Drive, Side Ported
- : SAE BB Through Drive, Side Ported
- : SAE C 2/4 bolt Through Drive, Side Ported
- : SAE CC 2/4 bolt Through Drive, Side Ported
- : SAE D Through Drive, Side Ported
- : With Through Drive Shaft, Without Coupling, Closed with Steel Cover, Side Ported
- : Without Through Drive, Rear Ported

6. Direction of Rotation

- : Clockwise
- : Counterclockwise

7. Mounting Flange and Shaft

- : SAE B Mount & SAE B Spline
- : SAE B Mount & SAE BB Spline
- : SAE C Mount & SAE C Spline (Only SAE C-4 mount for K3VLS65, 125 & 150)
- : SAE C Mount & SAE CC Spline (Only SAE C-4 mount for K3VLS125 & 150)
- : SAE D Mount & SAE D Spline

8. Flange Fixing Thread

- : SAE 4-bolt Flange, UNC Threaded
- : SAE 4-bolt Flange, Metric Threaded

- : Available
- : Under development
- : Not available
K3VLS Series

1. Ordering Code

1-2 Regulator Options

Please fill in the Inquiry Form on page 62 in order to specify the requirement.

Model Code

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3VLS 105 -</td>
<td>BB</td>
<td>R</td>
<td>CC</td>
<td>S</td>
<td>-</td>
<td>L1</td>
<td>A</td>
<td>A</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Flow Control

<table>
<thead>
<tr>
<th>Load Sense & Pressure Cut-Off</th>
<th>L0</th>
<th>With LS Bleed-off Orifice</th>
<th>L1</th>
<th>Without LS Bleed-off Orifice</th>
<th>P0</th>
<th>Pressure Cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>65</td>
<td>85</td>
<td>105</td>
<td>125</td>
<td>150</td>
</tr>
</tbody>
</table>

10. Differential Pressure Setting Range (For the details see page 14)

| A Standard Setting Range (1.0 to 3.0MPa) | 50 | 65 | 85 | 105 | 125 | 150 |
| B High Setting Range (1.5 to 4.0MPa) | | | | | | |

11. Additional Control Options (For the additional control options "11", only one option per column is acceptable)

Blank Without Any Additional Control	50	65	85	105	125	150
Torque Limit Control	50	65	85	105	125	150
Without Power Shift Control						
With Power Shift Control, Pilot Operated						
With Electric Proportional Reducing Valve						
Voltage: 24V, Deutsch Connector						
Voltage: 12V, Deutsch Connector						
Electric Displacement Control (Positive Control)	50	65	85	105	125	150
With Fail-safe Function						
Voltage: 24V, Deutsch Connector						
Voltage: 12V, Deutsch Connector						
Without Fail-safe Function						
Voltage: 24V, Deutsch Connector						
Voltage: 12V, Deutsch Connector						

12. Torque Limit Setting (Available only with the attachment of Torque Limiter)

Blank Without Any Torque Limit Setting	50	65	85	105	125	150
H1 H Spring, Corner Torque 85%						
H2 H Spring, Corner Torque 75%						
H3 H Spring, Corner Torque 65%						
H4 H Spring, Corner Torque 55%						
M1 M Spring, Corner Torque 70%						
M2 M Spring, Corner Torque 60%						
M3 M Spring, Corner Torque 50%						
M4 M Spring, Corner Torque 40%						
M5 M Spring, Corner Torque 30%						

Code M1 to M5: for torque limit control without power shift control (Additional Control Option Code [11]: "A")

- : Available
○ : Under development
ː : Not available
2-1 Specifications

<table>
<thead>
<tr>
<th>Size</th>
<th>50</th>
<th>65</th>
<th>85</th>
<th>105</th>
<th>125*</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement cm³</td>
<td>50</td>
<td>65</td>
<td>85</td>
<td>105</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Pressure Rated MPa</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable case pressure MPa</td>
<td></td>
<td>0.1 continuous / 0.4 peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Self prime min⁻¹</td>
<td>2,700</td>
<td>2,600</td>
<td>2,500</td>
<td>2,300</td>
<td>2,200</td>
<td>2,200</td>
</tr>
<tr>
<td>Maximum min⁻¹</td>
<td>3,250</td>
<td>3,000</td>
<td>3,000</td>
<td>2,640</td>
<td>2,400</td>
<td>2,400</td>
</tr>
<tr>
<td>Case volume L</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.7</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Temperature range °C</td>
<td></td>
<td>-20 to +95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity range cSt</td>
<td></td>
<td>10 to 1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum contamination level</td>
<td>ISO 4406 -/18/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable through drive torque Nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE A</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>SAE B</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>SAE BB</td>
<td>435</td>
<td>435</td>
<td>435</td>
<td>435</td>
<td>435</td>
<td>435</td>
</tr>
<tr>
<td>SAE C</td>
<td>-</td>
<td>435</td>
<td>435</td>
<td>558</td>
<td>435</td>
<td>435</td>
</tr>
<tr>
<td>SAE CC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>702</td>
<td>899</td>
<td>899</td>
</tr>
<tr>
<td>SAE D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>899</td>
<td>899</td>
</tr>
<tr>
<td>Mass kg</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>Moment of inertia kg m²</td>
<td>2.89×10⁻³</td>
<td>5.30×10⁻³</td>
<td>6.77×10⁻³</td>
<td>9.85×10⁻³</td>
<td>1.84×10⁻²</td>
<td>1.82×10⁻²</td>
</tr>
<tr>
<td>Torsional stiffness Nm/rad</td>
<td>4.56×10⁴</td>
<td>5.26×10⁴</td>
<td>6.79×10⁴</td>
<td>1.32×10⁵</td>
<td>1.99×10⁵</td>
<td>1.99×10⁵</td>
</tr>
<tr>
<td>Coating</td>
<td>Red synthetic resin primer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: Size 125 is under development.
*2: Self prime speed is the maximum operating speed under the self priming condition at maximum displacement. Steady state inlet pressure should be greater or equal to 0 MPa gauge.
*3: Maximum speed is the maximum operating speed that can run without damage to the pump under restriction of operating conditions.

Allowable maximum input torque

<table>
<thead>
<tr>
<th>Spline specifications</th>
<th>SAE B</th>
<th>SAE BB</th>
<th>SAE C</th>
<th>SAE CC</th>
<th>SAE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline specifications</td>
<td>13T 16/32 DP</td>
<td>15T 16/32 DP</td>
<td>14T 12/24 DP</td>
<td>17T 12/24 DP</td>
<td>13T 8/16 DP</td>
</tr>
<tr>
<td>Allowable maximum input torque (Nm)</td>
<td>200</td>
<td>315</td>
<td>630</td>
<td>1,060</td>
<td>1,490</td>
</tr>
<tr>
<td>Pump size</td>
<td>K3VLS50 K3VLS65</td>
<td>K3VLS50 K3VLS65</td>
<td>K3VLS65 K3VLS85 K3VLS105 K3VLS125 K3VLS150</td>
<td>K3VLS105 K3VLS125 K3VLS150</td>
<td>K3VLS125 K3VLS150</td>
</tr>
</tbody>
</table>

(Note) Maximum pressure must be reduced to operate within the allowable maximum input torque as below when the torque limit control is not used.

- SAE B spline K3VLS50: 24 MPa K3VLS65: 18 MPa
- SAE C spline K3VLS150: 25 MPa

For above options, if 28 MPa is needed, use the torque limit control.
2-2 Functional Description of Regulator

Load Sensing and Pressure Cut-off
(Ordering Code [9]: L0 / L1)

This regulator has function of flow and pressure control (i.e. load sensing control and pressure cut-off control.)

To control flow a variable orifice is used. (A variable orifice is not included in the pump and shall be prepared separately.) Pump displacement is controlled to maintain the differential pressure across the orifice constant. The flow is controlled to a required flow regardless of pump delivery pressure. In addition, there is a pressure cut-off function incorporated into the control. The pressure cut-off function overrides the flow control function.

L0 control: with a bleed off orifice
L1 control: without a bleed off orifice

Releasing the pressure at port PL results in standby condition, which provides zero flow at unloading condition. The unloading pressure is typically 0.1 to 0.2 MPa higher than differential pressure setting.

<table>
<thead>
<tr>
<th>Code</th>
<th>Adjustment range</th>
<th>Adjustment sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0 to 3.0</td>
<td>1.3 / turn</td>
</tr>
<tr>
<td>C</td>
<td>1.5 to 4.0</td>
<td>2.5 / turn</td>
</tr>
</tbody>
</table>

Pressure cut-off setting
Standard setting at factory: 28 0/-1.5 MPa
Pressure cut-off setting range is from 5 MPa to 28 MPa.

<table>
<thead>
<tr>
<th>Adjustment range</th>
<th>Adjustment sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 to 28.0</td>
<td>8.0 / turn</td>
</tr>
</tbody>
</table>

Hydraulic circuit

Flow, Pressure control curve

Flow, Discharge pressure
2. Technical Information

2-2 Functional Description of Regulator

กรมควบคุม
(Ordering Code [9]: P0)
This regulator has function of pressure control. As discharge pressure rises to the cut-off setting, the pump displacement is reduced to prevent the discharge pressure from exceeding and keep the set pressure. It is imperative that a safety relief valve be installed in the system. By connecting the Pc port to a remote pressure control relief valve, variable pump pressure control can be achieved. The remote pressure control relief valve is to be set to 1.5 MPa below to the required system pressure.

The remote control relief valve is out of scope of supply.

<table>
<thead>
<tr>
<th>Code</th>
<th>Adjustment range</th>
<th>Adjustment sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0 to 3.0</td>
<td>1.3 / turn</td>
</tr>
<tr>
<td>C</td>
<td>1.5 to 4.0</td>
<td>2.5 / turn</td>
</tr>
</tbody>
</table>

Pressure cut-off setting
Standard setting at factory : 28.0/-1.5 MPa
Pressure cut-off setting range is from 5 MPa to 28 MPa.

Relief valve for remote pressure control
(Out of scope of supply)

Hydraulic circuit
2-2 Functional Description of Regulator

Torque Limiter

(Ordering Code [11]: A)

L0/L1 control functions as previously noted. In response to a rise in delivery pressure the swash plate angle is decreased, restricting the input torque. This regulator prevents excessive load against the prime mover.

The torque limiter is comprised of two springs that oppose the spool force generated by the system pressure. By turning the adjustment screws, the appropriate input torque limit can be set.

Torque limiter control setting is shown in the attached table, and the torque limiter can be adjusted by the torque value of the table. Refer to the instruction manual for adjustment.

Torque limiter control curve

Hydraulic circuit
2. Technical Information

2-2 Functional Description of Regulator

Torque Limiter Settings
(Ordering Code [11]: A)

Pump control curve (sample)

![Pump Control Curve](image)

Torque setting without power shift function

<table>
<thead>
<tr>
<th>Pump size</th>
<th>Ordering code [12]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
</tr>
<tr>
<td>K3VLS50</td>
<td>155</td>
</tr>
<tr>
<td>K3VLS65</td>
<td>200</td>
</tr>
<tr>
<td>K3VLS85</td>
<td>265</td>
</tr>
<tr>
<td>K3VLS105</td>
<td>330</td>
</tr>
<tr>
<td>K3VLS125</td>
<td>*</td>
</tr>
<tr>
<td>K3VLS150</td>
<td>*</td>
</tr>
</tbody>
</table>

*Size 125 and 150 are under development. Unit:Nm
2-2 Functional Description of Regulator

Torque Limiter with Power Shift
(Ordering Code [11]: B, C2*, C3*)

Torque limiter is available with variable torque limit control. Torque limit setting can be varied by the external pilot pressure supply (code "B") or the integrated electric proportional control valve with the external servo pressure supply (code "C"). Code "B" and "C" enable to shift the power control setting as shown in the following torque limiter control characteristic curve.

See the table (page 19) for torque setting according to the external pilot pressure or the input current to the integrated proportional valve. Required servo pressure to the solenoid is 3.5 to 4.5 MPa.

(*): Ordering code C2, C3 are under development.
2. Technical Information

2-2 Functional Description of Regulator

Torque Limiter and Power Shift Settings

Pump control curve with power shift (sample)

Torque setting with power shift function

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump size</td>
<td>Pf (MPa)</td>
<td>Current (mA)</td>
<td>Max. Input torque (Nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24V C2</td>
<td>12V C3</td>
</tr>
<tr>
<td>K3VLS50</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>290</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>460</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
<td>620</td>
<td>1,450</td>
</tr>
<tr>
<td>K3VLS65</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>290</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>460</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
<td>620</td>
<td>1,450</td>
</tr>
<tr>
<td>K3VLS85</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>290</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>460</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
<td>620</td>
<td>1,450</td>
</tr>
<tr>
<td>K3VLS105</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>290</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>460</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
<td>620</td>
<td>1,450</td>
</tr>
<tr>
<td>K3VLS125</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3VLS150</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input torque in the above table is planned value and for reference.
• Size 125 and 150 are under development.
2-2 Functional Description of Regulator

Electric Displacement Control (Positive Control)
- With Fail-safe Function (Ordering Code[11]: E2, E3)
- Without Fail-safe Function (Ordering Code[11]: F2, F3)

The electric displacement control enables the pump displacement to be changed according to the change of input current to the solenoid. The pump displacement can be adjusted in proportion to the input current between the input current of \(I_1\) and \(I_2\) (refer to control curve).

With fail-safe function, at loss of input current in such case of brakage of electric wires, the pump displacement becomes maximum automatically. Even under this condition the load sensing and pressure cut-off control can be operated.

The fail-safe function is designed only for usage in short period for emergency. Necessary repair is to be made in the soonest opportunity.

For the hydraulic circuit refer to page 21.

Note for pumps with fail-safe

Note for start up
Due to its structure, the electric displacement control requires larger input current than \(I_2\) at start up, then normal proportional control can be achieved between \(I_1\) and \(I_2\).

Minimum operating pressure
With fail-safe function, in order to ensure safety and repeatability of control the minimum operating pressure of 5 MPa is to be secured. This avoids switching the pump to fail-safe mode unexpectedly.

Input current ramp time requirement
With fail-safe function (Ordering code: E2, E3), ramp time of 200 msec or larger is to be secured.

The table below shows the recommended dither conditions for the input current:

<table>
<thead>
<tr>
<th>Ordering code</th>
<th>(I_1)</th>
<th>(I_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2, F2</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>E3, F3</td>
<td>400</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Recommended dither condition for the input current
- Dither frequency: 150 Hz
- Dither amplitude: for E2, F2 200 mA\(^{pp}\), for E3, F3 400 mA\(^{pp}\)

The following table shows the technical information for the pumps with fail-safe function:

<table>
<thead>
<tr>
<th></th>
<th>E2, F2</th>
<th>E3, F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current [mA]</td>
<td>700</td>
<td>1,400</td>
</tr>
<tr>
<td>Coil resistance (at 20°C) [Ω]</td>
<td>22.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Power consumption (at 20°C) [W]</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Connector type</td>
<td>Ladd Distribution DT04-2P</td>
<td></td>
</tr>
<tr>
<td>Water proof</td>
<td>IP67</td>
<td></td>
</tr>
</tbody>
</table>
2. Technical Information

2-2 Functional Description of Regulator

Electric Displacement Control (Positive Control)
- With Fail-safe Function (Ordering Code[11]: E2, E3)
- Without Fail-safe Function (Ordering Code[11]: F2, F3)
3 Dimensions

3-1 Installation Dimensions

K3VLS50 with Cut-off/Load Sense Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 50 - 1 0 R BB • - LO A
- K3VLS 50 - 1 0 R BB • - L0 A
- K3VLS 50 - 1 0 R BB • - PO A

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS50 with Torque Limit Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 50 - 1 0 R BB * - L0 A A
- K3VLS 50 - 1 0 R BB * - L1 A A
- K3VLS 50 - 1 0 R BB * - P0 A A

Dimensions in mm.
3-1 Installation Dimensions

K3VLS50 Torque Limit with Power Shift Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS 50 - 1 N R BB • - LO A B
- K3VLS 50 - 1 N R BB • - L1 A B
- K3VLS 50 - 1 N R BB • - PO A B

- Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS50 Electric Displacement Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS50 - 10 R BB • - L0 A E or - L0 A F
- K3VLS50 - 10 R BB • - L1 A E or - L1 A F
- K3VLS50 - 10 R BB • - P0 A E or - P0 A F
3-1 Installation Dimensions

K3VLS50 Rear Port (Clockwise Rotation)
Model Code: K3VLS 50 - 1 R R BB - - L0 A
: K3VLS 50 - 1 R R BB - - L1 A
: K3VLS 50 - 1 R R BB - - P0 A

K3VLS50 Torque Limit Control, Rear Port (Clockwise Rotation)
Model Code: K3VLS 50 - 1 R R BB - - L0 A A
: K3VLS 50 - 1 R R BB - - L1 A A
: K3VLS 50 - 1 R R BB - - P0 A A
3. Dimensions

3-1 Installation Dimensions

K3VLS50 Mounting Flange and Shaft Options

SAE BB Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": BB

SAE B Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": B

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

K3VLS50 Porting Details

Main SAE Flanged Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Flange threads</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>SAE J518C std pressure (code 61) 1"</td>
<td>3/8-16UNC-2B-18</td>
<td>57</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>SAE J518C std pressure (code 61) 1-1/2"</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
</tbody>
</table>

Metric Version (‘H’ in position 8 of model code)

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>PORT ISO 6162-1: 2012 P25M</td>
<td>M10-17</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>PORT ISO 6162-1: 2012 P38M</td>
<td>M12-20</td>
</tr>
</tbody>
</table>

Auxiliary Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Drain port</td>
<td>3/4-16UNF-2B-14.3 (ISO 11926-1: 1995)</td>
<td>98</td>
</tr>
<tr>
<td>PL</td>
<td>Load sensing port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pc</td>
<td>Pressure control port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>a</td>
<td>Gauge port</td>
<td>9/16-18UNF-2B-12.7 (ISO 11926-1: 1995)</td>
<td>59</td>
</tr>
<tr>
<td>Psv</td>
<td>Servo pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pf</td>
<td>Power shift pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
</tbody>
</table>
3. Dimensions

3-1 Installation Dimensions

K3VLS50 Through Drive Options

Through Drive SAE A
Ordering Code “5. Through Drive and Porting”: A

Through Drive SAE B
Ordering Code “5. Through Drive and Porting”: B

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS50 Through Drive Options

Through Drive SAE BB
Ordering Code "5. Through Drive and Porting": BB

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS65 with Cut-off / Load Sense Control, Side Port (Clockwise Rotation)

Model Code:

- K3VLS 65 - 1 0 R BB • - LO A
- K3VLS 65 - 1 0 R BB • - L1 A
- K3VLS 65 - 1 0 R BB • - PO A

Adjustment screw for cut-off pressure
Adjustment screw for differential pressure

SAE “BB” 30° Involute Spline Shaft
SAE J744-25-4 15T 16/32 DP

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3-1 Installation Dimensions

K3VLS65 Torque Limit Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS 65 - 1 0 R BB • - L0 A A
- K3VLS 65 - 1 0 R BB • - L1 A A
- K3VLS 65 - 1 0 R BB • - P0 A A

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS65 Torque Limit with Power Shift Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 65 - 1 OR BB • - LOA R
- K3VLS 65 - 1 OR BB • - L1 A R
- K3VLS 65 - 1 OR BB • - PO A R

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS65 with Cut-off Load Sense Control, Side Port
(Clockwise Rotation, SAE C-4 Mount Type)

Model Code:
- K3VLS 65 - 1 0 R C* - L0 A
- K3VLS 65 - 1 0 R C* - L1 A
- K3VLS 65 - 1 0 R C* - P0 A

Dimensions in mm.

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS65 Electric Displacement Control, Side Port (Clockwise Rotation)

Model Code: K3VLS 65 – 1 0 R BB • – L0 A E or – L0 A F
 : K3VLS 65 – 1 0 R BB • – L1 A E or – L1 A F
 : K3VLS 65 – 1 0 R BB • – P0 A E or – P0 A F

*Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS65 Rear Port (Clockwise Rotation)

Model Code:
- K3VLS 65 - 1 R R BB • - L0 A
- K3VLS 65 - 1 R R BB • - L1 A
- K3VLS 65 - 1 R R BB • - P0 A

K3VLS65 Torque Limit Control, Rear Port (Clockwise Rotation)

Model Code:
- K3VLS 65 - 1 R R BB • - L0 A
- K3VLS 65 - 1 R R BB • - L1 A
- K3VLS 65 - 1 R R BB • - P0 A
3. Dimensions

3-1 Installation Dimensions

- **K3VLS65 Mounting Flange and Shaft Options**

SAE BB Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": BB

SAE B Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": B

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

- **K3VLS65 Porting Details**

Main SAE Flanged Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Flange threads</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNF Threaded Version ('S' in position 8 of model code)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>SAE J518C std pressure (code 61) 1"</td>
<td>3/8-16UNC-2B-18</td>
<td>57</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>SAE J518C std pressure (code 61) 2"</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
<tr>
<td>Metric Version ('H' in position 8 of model code)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>PORT ISO 6162-1: 2012 P25M</td>
<td>M10-17</td>
<td>57</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>PORT ISO 6162-1: 2012 P51M</td>
<td>M12-20</td>
<td>98</td>
</tr>
</tbody>
</table>

Auxiliary Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE Version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Drain port</td>
<td>3/4-16UNF-2B-14.3 (ISO 11926-1: 1995)</td>
<td>98</td>
</tr>
<tr>
<td>PL</td>
<td>Load sensing port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pc</td>
<td>Pressure control port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>a</td>
<td>Gauge port</td>
<td>9/16-18UNF-2B-12.7 (ISO 11926-1: 1995)</td>
<td>59</td>
</tr>
<tr>
<td>Psv</td>
<td>Servo pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pf</td>
<td>Power shift pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
</tbody>
</table>
3. Dimensions

3-1 Installation Dimensions

K3VLS65 Through Drive Options

Through Drive SAE A
Ordering Code "5. Through Drive and Porting": A

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

Through Drive SAE B
Ordering Code "5. Through Drive and Porting": B

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS65 Through Drive Options

Through Drive SAE BB
Ordering Code "5. Through Drive and Porting": BB

Through Drive SAE C
Ordering Code "5. Through Drive and Porting": C

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS85 with Cut-off / Load Sense Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 85 - 1 OR C - L0 A
- K3VLS 85 - 1 OR C - L1 A
- K3VLS 85 - 1 OR C - P0 A

Adjustment screw for cut-off pressure
Adjustment screw for differential pressure

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
(“) With a through drive is 86 mm
3-1 Installation Dimensions

K3VLS85 Torque Limit Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 85 - 1 0 R C - L0 A A
- K3VLS 85 - 1 0 R C - L1 A A
- K3VLS 85 - 1 0 R C - P0 A A
3. Dimensions

3-1 Installation Dimensions

K3VLS85 Torque Limit with Power Shift Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS 85 - 1 Q R C - LO A B
- K3VLS 85 - 1 Q R C - L1 A B
- K3VLS 85 - 1 Q R C - PO A B

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

łamK3VLS85 Rear Port (Clockwise Rotation)

Model Code: K3VLS 85 - 1 R R C • - L0 A
: K3VLS 85 - 1 R R C • - L1 A
: K3VLS 85 - 1 R R C • - P0 A

See port details

See port details

K3VLS85 Torque Limit Control, Rear Port (Clockwise Rotation)

Model Code: K3VLS 85 - 1 R R C • - L0 A A
: K3VLS 85 - 1 R R C • - L1 A A
: K3VLS 85 - 1 R R C • - P0 A A

See port details
3. Dimensions

3-1 Installation Dimensions

K3VLS85 Porting Details

Main SAE Flanged Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Flange threads</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>SAE J518C high pressure (code 62) 1-1/4”</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>SAE J518C std pressure (code 61) 2-1/2”</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
</tbody>
</table>

UNF Threaded Version (‘S’ in position 8 of model code)

Metric Version (‘H’ in position 8 of model code)

| A | Delivery port | PORT ISO 6162-2: 2012 P32M | M12-23 | 98 |
| B | Suction port | PORT ISO 6162-1: 2012 P64M | M12-22 | 98 |

Auxiliary Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Drain port</td>
<td>3/4-16UNF-2B-14.3 (ISO 11926-1: 1995)</td>
<td>98</td>
</tr>
<tr>
<td>PL</td>
<td>Load sensing port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pc</td>
<td>Pressure control port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>a</td>
<td>Gauge port</td>
<td>9/16-18UNF-2B-12.7 (ISO 11926-1: 1995)</td>
<td>59</td>
</tr>
<tr>
<td>Psv</td>
<td>Servo pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pf</td>
<td>Power shift pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
</tbody>
</table>
3. Dimensions

3-1 Installation Dimensions

K3VLS85 Through Drive Options

Through Drive SAE A
Ordering Code "5. Through Drive and Porting": A

Through Drive SAE B
Ordering Code "5. Through Drive and Porting": B

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS85 Through Drive Options

Through Drive SAE BB
Ordering Code "5. Through Drive and Porting": BB

Trough Drive SAE C
Ordering Code "5. Through Drive and Porting": C

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS105 with Cut-off / Load sense Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS 105 - 1 O R CC - L0 A
- K3VLS 105 - 1 O R CC - L1 A
- K3VLS 105 - 1 O R CC - P0 A

Adjustment screw for cut-off pressure
Adjustment screw for differential pressure

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS105 Torque Limit Control, Side Port (Clockwise Rotation)

Model Code: K3VLS 105 - 1 O R CC * - L0 A A
: K3VLS 105 - 1 O R CC * - L1 A A
: K3VLS 105 - 1 O R CC * - P0 A A

Dimensions in mm.
3-1 Installation Dimensions

K3VLS105 Torque Limit with Power Shift Control, Side Port
(Clockwise Rotation)

Model Code:
- K3VLS 105 - L0 A B
- K3VLS 105 - L1 A B
- K3VLS 105 - P0 A B

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS105 Rear Port (Clockwise Rotation)

Model Code:
- \(K3VLS\ 105 - 1\ R\ R\ CC\ \bullet - L0\ A \)
- \(K3VLS\ 105 - 1\ R\ CC\ \bullet - L1\ A \)
- \(K3VLS\ 105 - 1\ R\ CC\ \bullet - P0\ A \)

◆ K3VLS105 Torque Limit Control, Rear Port (Clockwise Rotation)

Model Code:
- \(K3VLS\ 105 - 1\ R\ R\ CC\ \bullet - L0\ A\ A \)
- \(K3VLS\ 105 - 1\ R\ CC\ \bullet - L1\ A\ A \)
- \(K3VLS\ 105 - 1\ R\ CC\ \bullet - P0\ A\ A \)
3. Dimensions

3-1 Installation Dimensions

K3VLS105 Mounting Flange and Shaft Options

- **SAE CC Spline Shaft**
 - Ordering Code "7.Mounting Flange and Shaft": CC

- **SAE C Spline Shaft**
 - Ordering Code "7.Mounting Flange and Shaft": C

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

K3VLS105 Porting Details

<table>
<thead>
<tr>
<th>Main SAE Flanged Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Des</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>UNF Threaded Version ('S' in position 8 of model code)</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Metric Version ('H' in position 8 of model code)</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Des</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>SAE Version</td>
</tr>
<tr>
<td>Dr</td>
</tr>
<tr>
<td>PL</td>
</tr>
<tr>
<td>Pc</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>Psv</td>
</tr>
<tr>
<td>Pf</td>
</tr>
</tbody>
</table>
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS105 Through Drive Options

Through Drive SAE A
Ordering Code "5. Through Drive and Porting": A

Through Drive SAE B
Ordering Code "5. Through Drive and Porting": B

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS105 Through Drive Options

Through Drive SAE BB
Ordering Code "5. Through Drive and Porting": BB

Through Drive SAE C
Ordering Code "5. Through Drive and Porting": C

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

\textbf{K3VLS105 Through Drive Options}

Through Drive SAE CC
Ordering Code "5. Through Drive and Porting": CC

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS125/150 with Cut-off/Load Sense Control, Side Port (Clockwise Rotation)

Model Code:
- K3VLS 125 - 1 O R D • - LO A
- K3VLS 125 - 1 O R D • - L1 A
- K3VLS 125 - 1 O R D • - PO A

Model Code:
- K3VLS 150 - 1 O R D • - LO A
- K3VLS 150 - 1 O R D • - L1 A
- K3VLS 150 - 1 O R D • - PO A

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS125/150 with Cut-off/Load Sense Control, Side Port
(Clockwise Rotation, SAE C-4 Mount Type)

Model Code:
- K3VLS 125 - 1 O R CC - L0 A
- K3VLS 125 - 1 O R CC - L1 A
- K3VLS 125 - 1 O R CC - P0 A

Dimensions in mm.

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

K3VLS125 /150 Rear Port
(Clockwise Rotation, SAE C-4 Mount Type)

Model Code:
- K3VLS 125 - 1 R R C • - L0 A
- K3VLS 125 - 1 R R C • - L1 A
- K3VLS 125 - 1 R R C • - PO A

Model Code:
- K3VLS 150 - 1 R R C • - L0 A
- K3VLS 150 - 1 R R C • - L1 A
- K3VLS 150 - 1 R R C • - PO A

K3VLS125 /150 Rear Port
(Clockwise Rotation, SAE D Mount Type)

Model Code:
- K3VLS 125 - 1 R R D • - L0 A
- K3VLS 125 - 1 R R D • - L1 A
- K3VLS 125 - 1 R R D • - PO A

Model Code:
- K3VLS 150 - 1 R R D • - L0 A
- K3VLS 150 - 1 R R D • - L1 A
- K3VLS 150 - 1 R R D • - PO A

Dimensions in mm.
3. Dimensions

3-1 Installation Dimensions

K3VLS125/150 Mounting Flange and Shaft Options

SAE CC Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": CC

SAE C Spline Shaft
Ordering Code "7. Mounting Flange and Shaft": C

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.

K3VLS125/150 Porting Details

Main SAE Flanged Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Flange threads</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNF Threaded Version (‘S’ in position 8 of model code)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>SAE J518C high pressure (code 62) 1-1/4"</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>SAE J518C std pressure (code 61) 2-1/2"</td>
<td>1/2-13UNC-2B-22</td>
<td>98</td>
</tr>
</tbody>
</table>

Metric Version (‘H’ in position 8 of model code)

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Flange threads</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Delivery port</td>
<td>PORT ISO 6162-2:2012 P32M</td>
<td>M12-23</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>Suction port</td>
<td>PORT ISO 6162-1:2012 P64M</td>
<td>M12-23</td>
<td>98</td>
</tr>
</tbody>
</table>

Auxiliary Ports

<table>
<thead>
<tr>
<th>Des</th>
<th>Port name</th>
<th>Port size</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE Version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr</td>
<td>Drain port</td>
<td>1/16-12UN-2B-19 (ISO 11926-1: 1995)</td>
<td>167</td>
</tr>
<tr>
<td>PL</td>
<td>Load sensing port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pc</td>
<td>Pressure control port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1: 1995)</td>
<td>12</td>
</tr>
<tr>
<td>a</td>
<td>Gauge port</td>
<td>9/16-18UNF-2B-12.7 (ISO 11926-1: 1995)</td>
<td>59</td>
</tr>
<tr>
<td>Psv</td>
<td>Servo pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1:1995)</td>
<td>12</td>
</tr>
<tr>
<td>Pf</td>
<td>Power shift pressure port</td>
<td>7/16-20UNF-2B-11.5 (ISO 11926-1:1995)</td>
<td>12</td>
</tr>
</tbody>
</table>
3. Dimensions

3-1 Installation Dimensions

- **K3VLS125/150 Through Drive Options**

 Through Drive SAE B

 Ordering Code "5. Through Drive and Porting": B

 ![Diagram of K3VLS125/150 Through Drive SAE B](image)

 Dimensions in mm.

 Through Drive SAE BB

 Ordering Code "5. Through Drive and Porting": BB

 ![Diagram of K3VLS125/150 Through Drive SAE BB](image)

 Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-1 Installation Dimensions

◆ K3VLS125/150 Through Drive Options

Through Drive SAE C
Ordering Code “5. Through Drive and Porting”: C

Through Drive SAE CC
Ordering Code “5. Through Drive and Porting”: CC

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit.
3. Dimensions

3-2 Installation of Auxiliary Pumps

Allowable mass moment for combination pump

K3VLS series can consist of multiple pumps using through drive mounting. The second pump can be attached up to the same size of the first pump. The table below shows the maximum allowable mass moment to the mounting flange of the first pump under the dynamic acceleration of 10G. The moment can be calculated by the formula shown below.

<table>
<thead>
<tr>
<th>Allowable mass moment T_m (Nm) (dynamic acceleration of 10G)</th>
<th>K3VLS50</th>
<th>K3VLS65</th>
<th>K3VLS85</th>
<th>K3VLS105</th>
<th>K3VLS 125+/150</th>
<th>K3VLS 125+/150</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE B mount</td>
<td>SAE B mount</td>
<td>SAE C mount</td>
<td>SAE C-2 mount</td>
<td>SAE C-4 mount</td>
<td>SAE C-2 mount</td>
<td>SAE C-4 mount</td>
</tr>
<tr>
<td>180</td>
<td>210</td>
<td>330</td>
<td>280</td>
<td>410</td>
<td>280</td>
<td>410</td>
</tr>
</tbody>
</table>

* 1: Size 125 is under development.

Calculation formula for mass moment

$$T_m = \left(m_1 \times L_1 + m_2 \times L_2 + m_3 \times L_3 + \ldots \right) \times \frac{1}{102}$$

$m_1, m_2, m_3 \ldots$: Weight of pump [kg]

$L_1, L_2, L_3 \ldots$: Center of gravity [mm]

See next page for values.
3. Dimensions

Values for calculation of mass moment

<table>
<thead>
<tr>
<th>Through drive size ported</th>
<th>Length, weight</th>
<th>50</th>
<th>65 SAE B mount</th>
<th>65 SAE C mount</th>
<th>85</th>
<th>105</th>
<th>125*/150 SAE C mount</th>
<th>125*/150 SAE D mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without through drive, side ported</td>
<td>Total length L (mm)</td>
<td>214</td>
<td>239</td>
<td>239</td>
<td>271</td>
<td>274</td>
<td>331</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>107</td>
<td>117</td>
<td>113</td>
<td>126</td>
<td>131</td>
<td>166</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>40</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without through drive, rear ported</td>
<td>Total length L (mm)</td>
<td>188</td>
<td>207</td>
<td>207</td>
<td>232</td>
<td>237</td>
<td>300</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>101</td>
<td>111</td>
<td>108</td>
<td>120</td>
<td>123</td>
<td>161</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>23</td>
<td>27</td>
<td>28</td>
<td>33</td>
<td>39</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>20</td>
<td>24</td>
<td>25</td>
<td>29</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE A</td>
<td>Total length L (mm)</td>
<td>234</td>
<td>253</td>
<td>253</td>
<td>281</td>
<td>286</td>
<td>313</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>116</td>
<td>129</td>
<td>126</td>
<td>136</td>
<td>137</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>26</td>
<td>31</td>
<td>32</td>
<td>37</td>
<td>42</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>23</td>
<td>28</td>
<td>29</td>
<td>33</td>
<td>39</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE B SAE BB</td>
<td>Total length L (mm)</td>
<td>261</td>
<td>280</td>
<td>280</td>
<td>308</td>
<td>313</td>
<td>348</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>133</td>
<td>146</td>
<td>142</td>
<td>152</td>
<td>152</td>
<td>182</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>41</td>
<td>46</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>26</td>
<td>31</td>
<td>32</td>
<td>37</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE C SAE CC</td>
<td>Total length L (mm)</td>
<td>–</td>
<td>–</td>
<td>278</td>
<td>314</td>
<td>319</td>
<td>375</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>157</td>
<td>156</td>
<td>198</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>–</td>
<td>–</td>
<td>37</td>
<td>42</td>
<td>47</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>38</td>
<td>44</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE D</td>
<td>Total length L (mm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td>Center of gravity L1 (from mounting face: mm)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>•1</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with torque limiter</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>•1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without torque limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: Size 125 and 150 are under development.
K3VLS Series Inquiry Form

Please fill the table to specify the requirements.
Please contact us for any questions.

Swash Plate Type Axial Piston Pump

Options

- Options with ★ are under development.

Items

<table>
<thead>
<tr>
<th>Model Code</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Size</td>
<td>K3VLS</td>
<td></td>
</tr>
<tr>
<td>Series Specification</td>
<td></td>
</tr>
<tr>
<td>Through Drive and Porting</td>
<td></td>
</tr>
<tr>
<td>Direction of Rotation</td>
<td></td>
</tr>
<tr>
<td>Mounting Flange and Shaft</td>
<td></td>
</tr>
<tr>
<td>Flange Fixing Thread (Suction/Delivery)</td>
<td></td>
</tr>
<tr>
<td>Flow Control</td>
<td></td>
</tr>
<tr>
<td>Differential Pressure Setting Range (For the details see page 14)</td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>Torque Limit Control</td>
<td></td>
</tr>
<tr>
<td>Additional Control Options (For the additional control options 11, only one option per column is acceptable)</td>
<td></td>
</tr>
<tr>
<td>Torque Limit Setting (Available only with the attachment of Torque Limiter)</td>
<td></td>
</tr>
</tbody>
</table>

Operating condition, Duty cycle etc. (Describe your detail)

<table>
<thead>
<tr>
<th>Comments (Other requirements)</th>
<th>Operating condition, Duty cycle etc. (Describe your detail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Volume</td>
<td>Request Delivery Date</td>
</tr>
</tbody>
</table>

62